Self-Play Preference Optimization for Language Model Alignment

- **Department of Computer Science, UCLA**
- Workshop on Applied Algorithms for Machine Learning
 - June 10, 2024

Quanquan Gu

Acknowledgment

Yue Wu* UCLA

Zhiqing Sun* CMU

Huizhuo Yuan* UCLA

Kaixuan ji UCLA

Yiming Yang CMU

The Surge of Large Large Models

Proprietary models

Open models

Fine-Tuning Pre-Trained LLMs for Specific Tasks

Supervised Fine-Tuning (SFT)

- High-quality demonstration dataset curated from humans responses or advanced LLM generations.
- Model is typically fine-tuned with supervised learning objective.

Data curations and annotations are expensive!

- A preference dataset annotated either by humans (RLHF) or advanced LLMs (RLAIF).
- Model is fine-tuned by RL

Self-Play Fine-Tuning (SPIN)

Iterative self-play on an SFT dataset.

- LLM generates its own training data for its upcoming iterations.
- LLM refines itself to discern these self-generated responses from those obtained from human-annotated data.

Chen et al., Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models, ICML 2024

Fine-Tuning Pre-Trained LLMs for Specific Tasks

Supervised Fine-Tuning (SFT)

- High-quality demonstration dataset curated from humans responses or advanced LLM generations.
- Model is typically fine-tuned with supervised learning objective.

Data curations and annotations are expensive!

- A preference dataset annotated either by humans (RLHF) or advanced LLMs (RLAIF).
- Model is fine-tuned by RL

Reinforcement Learning from Human Feedback (RLHF)

RLHF assumes a "reward" for every response.

Br	adley-
	$\mathbb{P}(a$

Christiano et al., Deep Reinforcement Learning from Human Preferences, NIPS, 2017 Ziegler et al., Fine-tuning language models from human preferences, 2020

Direct Preference Optimization (DPO)

DPO does not maintain a separate reward model, instead directly tunes LLM from the preference feedback. However, it is still based on the Bradley-Terry model implicitly

Direct Learning from Preference

Do human always exhibit a reward-guided preference?

Rafailov et al., Direct Preference Optimization: Your Language Model is Secretly a Reward Model, NuerIPS 2023

Human Preference is More Complicated than a **Reward Model**

Human preference is not fully rational or transitive (Tversky, 1969) There can be loops in the preferences.

Can we deal with general preference for better language model alignment?

Self-Play Preference Optimization (SPPO)

Iterative self-play with a preference oracle.

- LLM generates its own training data for its upcoming iterations.
- LLM refines itself to (1) output the preferred self-generated responses more often. (2) output the rejected self-generated responses less often.

Wu et al., Self-Play Preference Optimization for Language Model Alignment, 2024

AlpacaEval 2.0 win rate (against GPT4-Turbo)

Self-Play Mechanism

Main player: (LLM at current iteration) aims to win over the opponent player / previous iteration.

Opponent player: (LLM from previous iteration) generates responses to approximate the policy.

SPPO consists of the following two steps at iteration t + 1: (1) generate responses for the opponent player, and (2) updating the main player to win over the opponent player.

11

A picture created by DALL·E 3

Problem Setting

Input sequence: $\mathbf{x} = [x_1, \dots, x_n]$

Response sequence: $\mathbf{y} = [y_1, \dots, y_m]$

Conditional Probability (LLM): $p_{\theta}(y | x)$

Autoregressive model: $p_{\theta}(\mathbf{y} | \mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(y_i | \mathbf{x}, \mathbf{y}_{< j})$

 \mathcal{M} j = 1

A Two-Player Constant-Sum Game

For a given prompt **x**, any two response \mathbf{y}_1 and \mathbf{y}_2 ,

Player 2 1/2 $\max_{\pi} \min_{\pi'} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}, \mathbf{y}_1 \sim \pi, \mathbf{y}_2 \sim \pi'} [\mathbb{P}(\mathbf{y}_1 \succ \mathbf{y}_2 | \mathbf{x})].$ Player 1 [1/2 $\mathbb{P}(\mathbf{y}_1 \succ \mathbf{y}_2)$ 1/2 1/2

One of them is preferred by $\mathbb{P}(\mathbf{y}_1 > \mathbf{y}_2 | \mathbf{x})$ The two-player game is defined as: Dud'ik et al., Contextual Dueling Bandits, COLT 2015 Munos et al., Nash Learning from Human Feedback, ICML 2024

Von Neumann Winner (Nash Equilibrium)

The two-player game:

 $\max_{\pi} \min_{\pi'} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}, \mathbf{y}_1 \sim \pi, \mathbf{y}_2 \sim \pi'} [\mathbb{P}(\mathbf{y}_1 \succ \mathbf{y}_2 | \mathbf{x})].$

$$(\pi^*, \pi^*) = \arg \max_{\pi} \min_{\pi'} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}, \mathbf{y}_1 \sim \pi, \mathbf{x}}$$

How to solve this game efficiently for LLMs?

Dud'ık et al., Contextual Dueling Bandits, COLT 2015 Munos et al., Nash Learning from Human Feedback, ICML 2024

The Von-Neumann winner is the Nash Equilibrium of this symmetric game:

 $\sum_{\mathbf{y}_{2}\sim\pi'} \left[\mathbb{P}(\mathbf{y}_{1} \succ \mathbf{y}_{2} \mid \mathbf{x}) \right].$

The Multiplicative Weights Algorithm

Freund & Schapire (1999) proposed an algorithm for two-player game.

It admits the multiplicative weights update rule:

$$\pi_{t+1}(\mathbf{y} \,|\, \mathbf{x}) \propto \pi_t(\mathbf{y} \,|\,$$

Equivalently, it admits the following form:

$$\pi_{t+1}(\mathbf{y} \mid \mathbf{x}) = \frac{\pi_t(\mathbf{y} \mid \mathbf{x}) \exp(\eta \mathbb{P}(\mathbf{y} \succ \pi_t \mid \mathbf{x}))}{Z_{\pi}(\mathbf{x})}$$

Computationally intractable; how to approximate it efficiently?

- \mathbf{x})exp($\eta \mathbb{P}(\mathbf{y} \succ \pi_t | \mathbf{x}))$

 \mathcal{H}_{t}

Responses with higher win rate will be assigned higher probability.

- Freund & Schapire, Adaptive game playing using multiplicative weights, Games and Economic Behavior, 1999 15

The SPPO objective

The solution has the form: $\log\left(\frac{\pi_{t+1}(\mathbf{y})}{\pi_t(\mathbf{v})}\right)$

Using least-square regression to obtain the optimization objective: $\frac{\mathbf{r}(\mathbf{y} \mid \mathbf{x})}{\mathbf{r}_t(\mathbf{y} \mid \mathbf{x})} - \left(\eta \mathbb{P}(\mathbf{y} \succ \pi_t \mid \mathbf{x}) - \log Z_{\pi_t}(\mathbf{x})\right)^2$ Replace $\log Z_{\pi_t}(\mathbf{x})$ with $\eta/2$ $\frac{(\mathbf{y} \mid \mathbf{x})}{(\mathbf{y} \mid \mathbf{x})} - \eta \left(\mathbb{P}(\mathbf{y} \succ \pi_t \mid \mathbf{x}) - 1/2 \right) \right]^2$

$$\pi_{t+1} = \arg\min_{\pi} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}, \mathbf{y} \sim \pi_t(\cdot | \mathbf{x})} \left[\log\left(\frac{\pi(t)}{\pi_t(t)}\right) \right]$$

$$\pi_{t+1} = \arg\min_{\pi} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}, \mathbf{y} \sim \pi_t(\cdot | \mathbf{x})} \left[\log\left(\frac{\pi(\mathbf{x})}{\pi_t(\mathbf{x})}\right) \right]$$

$$\left(\frac{\mathbf{y} \,|\, \mathbf{x}}{\mathbf{y} \,|\, \mathbf{x}}\right) = \eta \mathbb{P}(\mathbf{y} \succ \pi_t \,|\, \mathbf{x}) - \log Z_{\pi_t}(\mathbf{x})$$

An End-to-End SPPO objective

 $\pi_{t+1} = \arg\min_{\pi} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}, \mathbf{y} \sim \pi_t(\cdot | \mathbf{x})} \left| \log \left(\frac{\pi}{\pi} \right) \right|_{\pi}$

In practice, $\mathbb{P}(\mathbf{y} > \pi_t | \mathbf{x})$ is replaced with finite sample estimate.

Intuitively, if a tie occurs, i.e., $\mathbb{P}(\mathbf{y} > \pi_t | \mathbf{x}) = 1/2$, we do not update weight at \mathbf{y} .

If y wins over π_t on average, i.e., $\mathbb{P}(\mathbf{y} > \pi_t | \mathbf{x}) > 1/2$, we increase the probability at y to take the advantage of y over π_t .

$$\frac{\pi(\mathbf{y} \mid \mathbf{x})}{\pi_t(\mathbf{y} \mid \mathbf{x})} - \eta \left(\mathbb{P}(\mathbf{y} \succ \pi_t \mid \mathbf{x}) - 1/2 \right) \right]^2$$

The SPPO Algorithm

Algorithm 1 Self-Play Preference Optimization(SPPO)

- 2: for t = 1, 2, ... do
- Generate synthetic responses by samplin 3:
- Annotate the win-rate $\mathbb{P}(\mathbf{y}_k \succ \mathbf{y}_{k'} | \mathbf{x}), \forall k$ 4:
- Select responses from $\mathbf{y}_{1:K}$ to form datas 5:
- Optimize $\pi_{\theta_{t+1}}$ according to (4.6): 6:

$$\boldsymbol{\theta}_{t+1} \leftarrow \operatorname*{argmin}_{\boldsymbol{\theta}} \mathbb{E}_{(\mathbf{x}, \mathbf{y}, \widehat{P}(\mathbf{y} \succ \pi_t | \mathbf{x})) \sim \mathcal{D}_t} \left(\log \left(\frac{\pi_{\boldsymbol{\theta}}(\mathbf{y} | \mathbf{x})}{\pi_t(\mathbf{y} | \mathbf{x})} \right) - \eta \left(\widehat{P}(\mathbf{y} \succ \pi_t | \mathbf{x}) - \frac{1}{2} \right) \right)^2.$$
(4.7)

7: end for

1: input: base policy π_{θ_1} , preference oracle \mathbb{P} , learning rate η , number of generated samples K.

ng
$$\mathbf{x} \sim \mathcal{X}$$
 and $\mathbf{y}_{1:K} \sim \pi_t(\cdot | \mathbf{x})$.
 $\mathbf{x}, k' \in [K]$.
set $\mathcal{D}_t = \{(\mathbf{x}_i, \mathbf{y}_i, \widehat{P}(\mathbf{y}_i \succ \pi_t | \mathbf{x}_i))\}_{i \in [N]}$.

SPPO v.s. DPO and IPO

Denote
$$a = \beta \log \left(\frac{\pi_{\theta}(\mathbf{y}_{w} \mid \mathbf{x})}{\pi_{\text{ref}}(\mathbf{y}_{w} \mid \mathbf{x})} \right), b = \beta \log \left(\frac{\pi_{\theta}(\mathbf{y}_{l} \mid \mathbf{x})}{\pi_{\text{ref}}(\mathbf{y}_{l} \mid \mathbf{x})} \right)$$

 $\ell_{\rm DPO} =$

 $\ell_{\rm IPO} =$

 $\ell_{\text{SPPO}} = (a - a)$

Azar et al., A general theoretical paradigm to understand learning from human preferences, 2023

Consider a winner \mathbf{y}_{w} and \mathbf{y}_{l} with deterministic preference $\mathbb{P}(\mathbf{y}_{w} > \mathbf{y}_{l}) = 1$.

$$-\log \sigma(a - b) \qquad \sigma(x) = e^{x}/(1 + e^{x})$$

$$[(a-b)-1]^2$$

$$(-1/2)^2 + (b+1/2)^2$$

DPO and IPO loss enlarge the gap between the log-likelihood ratio SPPO pushes the winner up and pulls the loser down

Theoretical Analysis

sufficient samples.

$$\max_{\pi} \left[\mathbb{P}(\pi \succ \bar{\pi}_T) \right] - \mathrm{m}_T$$

We show the algorithm can provably converge to the Nash equilibrium given

Theorem 4.1. Assume the optimization problem (4.4) is realizable. Denote π_t as the policy obtained via (4.4) and the mixture policy $\bar{\pi}_T = \frac{1}{T} \sum_{t=1}^T \pi_t$. By setting $\eta = \Theta(1/\sqrt{T})$, we have that $\min_{\pi} \left[\mathbb{P}(\pi \prec \bar{\pi}_T) \right] = O(1/\sqrt{T}).$

Experiment Setup

- Model: Mistral-7B-Instruct-v0.2, an instruction fine-tuned version of Mistral-7B-v0.2.
- Preference Model: PairRM, an efficient pair-wise preference model of size 0.4B.
- Dataset: UltraFeedback, ~60k prompts from diverse sources \bullet
 - We split the 60k prompts three-fold into 3 epochs of iterative training.
- Evaluation: AlpacaEval 2.0, MT-Bench, HuggingFace Open LLM Leaderboard.

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 https://huggingface.co/llm-blender/PairRM

Performance on AlpacaEval 2.0

fine-tuned with responses or preferences generated by GPT-4

LLM gets self-improved by SPPO. In particular, SPPO can surpass models

Model	AlpacaEval LC. Win Rate V			
GPT-4 Turbo	50.0			
Claude 3 Opus	40.5			
GPT-4 0314	35.3			
Llama 3 70B Instruct	34.4			
SPPO Iter3 (best-of-16)	32.1			
GPT-4 0613	30.2			
Snorkel (best-of-16)	30.0			
Mistral Medium	28.6			
SPPO Iter3	28.5			
Claude 2	28.2			
Snorkel	26.4			
Gemini Pro	24.4			
Mistral 8×7B v0.1	23.7			
Llama 3 8B Instruct	22.9			
GPT-3.5 Turbo 0613	22.7			
Vicuna 33B v1.3	17.6			

SPPO can effectively boost up winning probability

Pairwise loss like DPO can only enlarge the relative probability gap between the winner and loser. SPPO can boost up the probability density of the winner.

Performance on MT-Bench

SPPO exhibits performance gain across different benchmarks.

Model	MT-Bench 1st Turn 2nd Turn Av				
Mistral-7B-Instruct-v0.2	7.78	7.25	7		
Snorkel (Mistral-PairRM-DPO)		7.33	7		
DPO Iter1 DPO Iter2 DPO Iter3	$7.45 \\ 7.57 \\ 7.49$	$\begin{array}{c} 6.58 \\ 6.56 \\ 6.69 \end{array}$	7 7 7		
SPPO Iter1	7.63	$6.79 \\ 7.08 \\ 7.34$	7		
SPPO Iter2	7.90		7		
SPPO Iter3	7.84		7		

MT-Bench

Performance on OpenLLM Leaderboard

SPPO exhibits performance gain across different benchmarks.

Models	Arc	TruthfulQA	WinoGrande	GSM8k	HellaSwag	MMLU	Average
Mistral-7B-Instruct-v0.2	63.65	66.85	77.98	41.93	84.89	59.15	65.74
Snorkel	66.04	70.86	77.74	36.77	85.64	60.83	66.31
DPO Iter1	63.14	68.39	77.19	40.33	85.25	59.41	65.62
DPO Iter2	64.16	67.84	76.09	39.95	85.23	59.03	65.38
DPO Iter3	65.19	67.89	77.27	32.30	85.49	59.00	64.52
IPO Iter1	64.68	68.60	77.98	43.75	85.08	59.04	66.52
IPO Iter2	62.12	66.30	77.51	39.20	83.15	59.70	64.66
IPO Iter3	62.97	67.12	77.51	37.45	83.69	59.57	64.72
SPPO Iter1	65.02	69.40	77.82	43.82	85.11	58.84	66.67
SPPO Iter2	65.53	69.55	77.03	44.35	85.29	58.72	66.75
SPPO Iter3	65.36	69.97	76.80	42.68	85.16	58.45	66.40

Open LLM Leaderboard

- SPPO is a self-play framework that can efficiently align LLM with general human preference.
- SPPO admits a simple end-to-end objective function for preference optimization that can effectively boost up the probability of the chosen responses.
- SPPO has achieved remarkable performance improvement across various benchmarks, without any strong external supervision like GPT-4.

Paper, Code and Models

Self-Play Preference Optimization for Language Model Alignment

Yue Wu^{*†} Zhiqing Sun^{*‡} Huizhuo Yuan^{*§} Kaixuan Ji[¶] Yiming Yang^{||} Quanquan Gu^{**}

- **Paper:** <u>https://arxiv.org/abs/2405.00675</u>
- **Code:** https://github.com/uclaml/SPPO
- lacksquare

Models: <u>https://huggingface.co/collections/UCLA-AGI/sppo-6635fdd844f2b2e4a94d0b9a</u>

Thank you for Listening!